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Abstract 

The formalism of the optical coherence has been 
applied to the description of the Bragg-case dynamical 
X-ray diffraction from crystals with randomly distrib- 
uted amorphous spheres. Explicit formulas have been 
found for the reflection curves of such crystals in 
the first and second approximations of the iterative 
solution of the Takagi equations. It is shown that if the 
coherent plane wave falls on the crystal the diffracted 
wave consists of two parts - the plane coherent wave 
(which corresponds to the diffraction from a perfect 
crystal with a modified value of the Debye-Waller 
factor) and the partially coherent wave (diffusion 
scattering). The form of the partially coherent contri- 
bution to the reflection curve is discussed and its 
dependence on the defect diameter and the defect 
concentration. From the curves the integrated inten- 
sities are obtained. It is proved that the integrated 
intensity of the waves diffracted from such crystals 
depends linearly on the relative disturbed volume of the 
crystal and in the first approximation it does not 
depend on the defect diameter if this volume remains 
constant. 

1. Introduction 

X-ray diffraction from crystals with randomly distrib- 
uted microdefects is described usually on the basis of 
kinematical diffusion scattering of X-rays. In previous 
papers (Hol~', 1980, 1982a,b,c), the dynamical diffrac- 
tion of X-rays was described by means of the 
formalism of optical coherence. It was shown 
within the framework of the dynamical diffraction 
theory that the correlated displacements of the atoms in 
the crystal cause the decrease in the degree of 
coherence of the diffracted wave and thus the shape of 
the reflection curve and the angular distribution of the 
diffracted intensity (diffusion scattering) are changed. 
The general principles formulated by Hol~, (1982a) 
were applied (Hol~, 1982b) for the computation of 
Laue-case reflection curves and it was proved that the 
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kinematical limit of the curves obtained is equal to that 
computed by the usual formalism of diffusion scatter- 
ing (Dederichs, 1971; Krivoglaz, 1967). 

The aim of this paper is to apply the general results 
for Bragg-case diffraction from crystals with small 
amorphous spherical volumes randomly distributed 
over the crystal volume. We obtain the explicit 
formulas for reflection curves of such crystals and we 
compute the integrated intensities of the diffracted 
wave. 

2. General theory 

The theoretical description of the dynamical diffraction 
from crystals with randomly distributed defects was 
based on the iterative solution of the Takagi equations 
in the integral form which was formulated by Afanas'ev 
& Kohn (1971). The details of the computation as well 
as the meaning of the symbols used are given in the 
paper by Hol~, (1982a) - referred to as I. 

The mutual coherence function (MCF) P(r,r ')  of the 
waves emitted from a disturbed crystal, which is 
defined as 

yF(r,r') = ((D(r)  ® D+(r '))E)r,  (1) 

can be written in a first approximation in the following 
form [cf I, equation (39)]: 

r")(ra,~a) = P{0)(ra,~) + exp[2n/(A.r a -- A*.~)]  

× f f drde O(ra-r) 
v v 

× (~(r) ~°~(r,,~)~+(,~)~E 0+(r'-  r'), 
(2) 

~(°)(r,r') is the MCF of the waves in the perfect crystal 
with the Debye-Waller factor (exp[--2nih.u(r)])E 
('quasiperfect crystal'), Pt°~(ra, ~) is the MCF of the 
waves emitted from the quasiperfect crystal. 

In this paper we are concerned with the Bragg case 
of diffraction. Then 

y[°)(r,r ')= I i j exp[ -2z t /Oc . r -  ~ . r ' ) ] ,  i , j=O,h, (3) 
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¢ ( r - r ' ) -  

if the plane coherent wave falls on the crystal. ~ is the 
physically correct solution of the dispersion relation 
(I.43) for the given direction of the incident rays. For 
the coefficients Iis 

[-~- {[tj} = le (4) 

holds, where I e is the intensity of the primary beam, c is 
the complex reflectivity of the quasiperfect crystal. 
Green's function of the quasiperfect crystal equals that 
of the perfect crystal with the changed value of Zh. 
Then in the Bragg case (c f  Afanas'ev & Kohn, 1971) 

6 0 , - y ' )  

sin 20 

6(s~- S'h) O(So- S'o) 0 

x iT~Z'hR(r--  r') 8 R ( r - -  r ')  (5) 
~S'o 

holds, where 
[ 

R (r - r' ) = O(s o -- S'o) O(s h -- S'h) [ Jo{ 2ZcK(X'hZ'_h) 1/2 

× [ (So -  S'o)(sh-- s~,)l l/~} 
70 So-  s~ 

J2 { 27"d((Z~ X'_h) 1/2 
~'h Sh -- S'h 

X [(S O -- Sro) (S h -- S~t)] 1/2 } ) (6) 

and J,(z)  is the Bessel function of the nth order. 
Formula (5) can be put into (2) only if the point r in (5) 
lies on the crystal surface. The first line in (5) is 
constructed in such a way that the formula 

d(°)(r) = ?o f dr' t ~ ( r -  r ')  De(r') exp(-27dA.r)  (7) 

Se 
is valid for the amplitudes of the waves on the entrance 
surface S e of the crystal [d0~°)(r) = De(r ) exp (--2xiA. r) 
must hold]. The crystal is assumed to be semi-infinite, 
the waves are e polarized. Green's function in the case 
when point r lies inside the crystal is more complicated 
(Afanas'ev & Kohn, 1971). It will be shown that it is 
not necessary to consider such an explicit form of 
Green's function. 

As has been shown in the previous paper, if the 
coherent beam falls on the crystal with randomly 
distributed defects, the wavefield emitted from the 
crystal is a superposition of the coherent wave, which 
corresponds to the wave emitted from the quasiperfect 
crystal [the first term in (2)] and of the partially 
coherent wave (diffusion scattering) whose intensity 
depends on the covariance of the deformation field in 
the crystal. Thus, the presence of the correlation of the 
deformation field diminishes the degree of coherence of 
the emitted wave. 

3. The first approximation of the diffracted intensity 

We apply the general formula (2) for the computation 
of the first approximation of the intensity diffracted 
from the crystal containing randomly distributed 
amorphous spheres. The diameter of the spheres is R 
and their concentration (normalized to unity) is c. The 
polarizability coefficient ~h of the quasiperfect crystal 
is then given by Xh exp(--P) (c f  Hol~, 1982b - referred 
to as II), where 

P = 4czrR3/(3 Vc) (8) 

is the amorphous part of the crystal related to the 
whole crystal volume. 

After some lengthy but easy algebra we obtain from 
(2) the following expression for the diffracted intensity 

where 

M 1 = I e 

I ( 1 ) ( r a )  = I(O) + M 1 + M 2, (9) 

n2K21Xh[2 f I 
sin 2 20 w w d r d d  e x p [ - 2 ~ i ( ~ . r -  K*.r')] 

v V 
x N(r'  - r) 60'a - y) 60' .  - y') 6(S0a -- SO) 

X 6(SOa-- Sro) O($ha-- Sh) O($ha-- Sth); (10) 

M2= ~2K2 f f drdr' exp[-2~iO¢.r-i¢*.r')] 
V V / 

x 6(Ya--Y)  3 (Ya- -Y ' )  ( N ( r - -  rt)[X_h 12 

X Ihh Grho(ra r) '* - -  Gho(r a -  r') 

+ N(r '  r)lXh [2100 GPhh(ra 1") '* _ _ G h h ( r a -  r t) 

21001Xh 12 
+ Re[ 6(Soa-  So) O(Sha-  Sh) 

sin 20 
t* x N ( r ' -  r)Ghh(ra /d)] 

+ 2 R e { N ' ( r - -  r')Z_h)(, ~ IhoG'ho(r a -- r) 

× [6(s0a- S'o) O(sh , , -  s~,)/sin 20 

+ Ghh(ra rr)]} . (11) 

The meaning of N, N ' ,  G' is explained in II. q 
Let us consider first the term M 1. After some further 

rearrangement we obtain 

f Iv(q)l 2 M 1 = ¼K2[ Xh [2 I e ~ dq (12) 
Vc I q h -  /(h 12 

reciprocal 
space 

where 

v ( q ) =  f 
real 

space 

dr{exp[-2n ih . l ( r ) ]  - 1 } exp(2niq.r) .  (13) 
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qh, Xh are the components of vectors q, ~, respectively, 
in the direction of the wavevector of the diffracted 
wave. l(r) is the displacement caused by a single defect. 
For the crystal with randomly distributed amorphous 
spheres v(q) was derived explicitly in II and the integral 
(12) was evaluated analytically (for details see Hol~,, 
1982c). 

c 2r,.R 
M 1 = 7 r . R 3 K 2 - - ~  ]Xhl2le 

IIm RYh[ 

x Re (2eiW(iW - 1) + W ~ + 2) 

+ 1/(3 IXhl2)} (14) 

holds, where W = 4rd~K h. 
From the well known estimation of the value of a 

convolution (cf. Schwartz, 1965) the value of M2 can 
be estimated. It can be shown that in the case of 333 
Cu Ka~ symmetrical diffraction on Si (Bragg case) the 
term M 2 makes at most 1% of M~ if 

PR 2 <_ 0.01 gm 2 (15) 

holds. Then, M2 can be completely neglected. 
Let us consider the physical sense of such neglection. 

This neglection is equivalent to putting 

6(yo-y) 
d ( r  a -- r ) -  

sin 20 

X ~(Sha -- Sh) O(Soa- SO) 0 Sh) 
0 ~(SOa- So) O(Sha- 

(16) 

into (2). This expression for Green's function can be 
obtained by ,~ ~ 0 in (5). It was shown in I that this 
limit yields the kinematical approximation of t~. Thus, 
the neglection of M E is equivalent to the assumption 
that the scattering of the wavefield in the crystal [the 
wavefield was computed dynamically - cf. (3)] can be 
described within the kinematical approximation. Thus, 
if (15) is valid, the partially coherent contribution to the 
reflection curve in the first approximation can be 
numerically evaluated from the explicit formula (14). 

4. The second approximation of the diffracted intensity 

In the previous chapter we showed that, if (15) is valid, 
the exact form of Green's function (5) can be replaced 
in (2) by its kinematical limit (16). The formula (5) for 
Green's function, however, cannot be used for exact 
computation of the second approximation of the 
intensity, because for this purpose we also need the 
values of t~ for the points r inside the crystal. From the 
paper of Afanas'ev & Kohn (1971) it follows that the 

kinematical limit of Green's function is given by (16) 
for this case, too. Hence, if we restrict ourselves only to 
the kinematical approach for computing the second 
approximation of the diffracted intensity, which we 
have made already in the case of the first approxi- 
mation, we need not use the exact form of Green's 
function inside the crystal. 

The second approximation of the diffracted intensity 
is given by (1.54) 

I(h2)(ra) ~---/htl)(ra) + exp[2zd(A-  A*).r  a] 

× f f drdr'[~'°'(r~ 'r') 
v v 

× (/~+(r')t~+(r - r ')p+(r))Et~+(r~-- r) 

+ d ( r  a -- r ) ( p ( r ) d ( r - -  r ' )p(r ' ) )e  

× ~t°)(r',ra)]. (17) 

Deriving this formula we have neglected the third-order 
correlation terms ( ~ t o )  fi+ ~+ fi+ ~+)r  etc. Putting 
(4) and (16) into (17) we obtain, after some rearrange- 
ment, 

I~2) = I~ 1) Ihh C ;(hX-h 
2 Sin 20 ~ 7h Re - -  4zr.R3/3 \ l(xt(h 

yh R2 
X x sin 20 [(ie-iO -- Qe-iQ - i)/Q2 - i/2]l),, 

(18) 

where Q = 4 ~ x R  sin 20/?h. 
Comparing (18) with (14) we find that the first 

approximation of the partially coherent part of the 
diffracted intensity is proportional to the intensity of 
the primary beam while the contribution of its second 
approximation Ih  (2) - -  I~ a) is proportional (in the 
approximation used) to the intensity diffracted by the 
quasiperfect crystal. The second approximation is 
therefore essential only in the region of the maximum of 
the reflection curve of the quasiperfect crystal. The 
assumption (16) results in a negligible error in the value 
of the second approximation if (15) is fulfilled. 

5. Numerical results 

Formulas (14) and (18) were used for the numerical 
evaluation of the first and second approximations of the 
diffracted intensity. The reflection curves were com- 
puted for 333 Cu Ka I symmetrical Bragg-case diffrac- 
tion on Si, the defects were described by their diameter 
R and the relative amorphous volume P given by (8). 
Their values were chosen so as to fulfl condition (15). 

The contributions of the first approximation to the 
reflection curve AI~I)(AO) = I~l)(AO) -- I~°)(AO) and the 
reflection curve of the quasiperfect crystal I~°~(AO) are 
plotted in Fig. 1 for various diameters R and various 
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concentrations c of defects so that the relative 
amorphous volume P remains constant. If R increases 
AIth n becomes narrower and higher. The minimum of 
AI~ n in the position of the maximum of I~ °) can easily 
be explained by the dependence of the effective 
absorption coefficient of X-rays on the departure AO 
from the Bragg position. Since the positions of the 
defects are not correlated, the partially coherent part of 
the reflection curve" is proportional to the amount of 
irradiated defects and thus inversely proportional to 
this absorption coefficient. In the vicinity of the 
maximum of the coherent reflection curve Ith°)(AO) this 
absorption coefficient has a maximum and AI~ n has a 
minimum. The asymmetry of the shape of AI~ n is given 
by the asymmetry of the dependence of the effective 
absorption coefficient on AO. 

The contributions of the second iteration to the 
reflection curve AI~2)(AO) -- Iht2)(AO) -- I~l)(AS) are 
plotted in Fig. 2 for various values of R and c so that P 
remains constant. These contributions are not neg- 
ligible only in the vicinity of the maximum of I~ °) where 
the absolute value of AI~ 2) is comparable with AI~ ~). For 
all angles of incidence AI~ 2) is negative. 

Integrating the functions Ith°)(AS), AI~)(AO), 
AIth2)(AO) over A8 in the range ( -oo;~) ,  we obtain the 
values Jh t°), AJth x), AJth2) , respectively, j~0) is the in- 
tegrated intensity of diffraction from the quasiperfect 
crystal, AJh u) and AJh t2) are the contributions of the first 
and second approximations to the integrated intensity 
of diffraction. The dependences j~o), AJth~), Aj~2) o n  the 

6x10 -3 

o...~ 

/.,x 10 -3 

2x10 -3 

¢ 

r i i 

11 k ?  
I I . 

/,//j ° 
/Y//I l:\\i 
,Y/ I l x \ i  

-I; ; ,; 10 zx.O,(") 

Fig. 1. The reflection curve (Cu Kcq 333 symmetrical Bragg case 
on Si) of the quasiperfect crystal (Ih {°J dashed line) and the 
contribution of the first approximation to the reflection curve 
(AI~ ~ full line). The curves were computed for constant value of 
P = 10 -2, the values of R are (a) 0.2 tma, (b) 0.4 ~tm, (c) 0.6 lam, 
(d) 0.8 ~tm, (e) 1.0 larn. The contribution of the second 
approximation to the reflection curve (AI~ 2~) is plotted in the 
upper right corner for R = 1.0 jam, P = 10 -2. The intensities are 
normalized to the intensity of the primary beam. 

diameter R (P remains constant) are plotted in Fig. 3 
for various values of P. It is obvious that the 
contribution AJ~ 1) is practically not dependent on R if P 
remains constant. AJ~ 2), however, depends on R 
strongly but it makes at most a low percentage of AJ~ n. 

Fig. 4 shows the dependence of j~o~, Ajtnn, Ajtff) and 
of Jh = Jth°) + AJ~ l) + AJ~ 2~ on P for a constant R. The 
dependence of j~0) on P is caused by the influence of P 
on X~. Since the integrated intensity of diffraction from 
the quasiperfect crystal is proportional to Re Xf,, 

j~o) ~ j~peffect)( 1 - -  P )  (19) 

i i 

10-3 

"3_-,. 

i 

5,10 -4 

0 10 ~(") 

Fig. 2. The contributions of the second approximation (AI~ 2~) to the 
reflection curve computed for P = 10 -2 and R (a) 0.2 gin, (b) 0.4 
gm, (c) 0.6 gm, (d) 0.8 gm, (e) 1.0 gm. The values ofAI~ 2~ are 
negative. 
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Fig. 3. The dependence of the integrated intensity of diffraction 
from the quasiperfect crystal (j~0)) and of the contributions of the 
first and second approximations of the integrated intensity 
(AJ~ 1'2)) on R for constant P = 10 -2 (full line) and 10 -I (dashed 
line). 
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holds. Thus, this dependence is approximately linear. 
The dependences of AJ~ 1), AJ~ 2) on P are given mainly 
by the fact that AJ~ 1'2) are proportional to c. The 
departures of this linear dependence are caused by the 
influence of P on X;, and thus on i¢. For the values of P 
used, however, these deviations can be neglected and 
AJ~ 1,2) can be considered to be proportional to P. 

according to Dederichs (1971) the intensity of the 
diffusion scattering in the kinematical approximation. 
The angular distribution of the scattered intensity is 
then given directly by Iv(q) l 2. 

(iii) Comparison with the results of paper II shows 
that the shape of the incoherent contribution to the 
reflection curve in the Bragg case is similar to that of 
the Laue case. 

6. Discussion 

(i) During the computation we have restricted our- 
selves to the special form of the defects, namely, we 
have assumed that the defects are amorphous spheres 
which do not deform the surrounding lattice. The actual 
defects in the crystals, however, deform the lattice 
essentially. The displacement field caused by a single 
defect with a spherical symmetry can be written as (see 
Eshelby, 1956) 

l(r)=tA~rrl 3 for Irl _>R 

I random value for I rl < R, 

where 4HA is the change in the crystal volume due to 
a single defect. If 12~4h/R21 < 1 then the exponential 
function in (13) can be replaced by the first two terms 
of its Taylor series. Then the reflection curves can be 
evaluated analytically. It was shown (cf. Hol~,, 1982c) 
that the reflection curves obtained are asymmetrical 
and the asymmetry depends on the sign of A. The 
integrated intensities, on the contrary, depend on A 
only slightly. For greater values the reflection curves 
cannot be evaluated analytically. 

(ii) Performing X~, -" 0 in (12) we obtain from (12) an 
integral of Iv(q)l 2 over the surface of the Ewald sphere 
near the reciprocal-lattice point, which represents 

I.I.I 

~i0 -s 
I--- 

_z 

i i , | 

j~o) 

'~ i I I ~ ~  " 
5xl0-Z 10 "1 

P 

Fig. 4. The integrated intensities j~o), dj~l,2) and the total integrated 
intensity J~ as a function of P for constant R = 0.3 p,m. 

7. Conclusions 

The results obtained can be summarized into the 
following items: 

(i) If the coherent plane wave falls on the crystal the 
diffracted wave is the superposition of the coherent 
plane wave which corresponds to the wave diffracted 
from the quasiperfect crystal and of the partially 
coherent wave whose MCF is dependent on the 
correlation of the deformation field in the crystal. 

(ii) The partially coherent contributions to the 
reflection curve in the first and second approximations 
are proportional to the relative amorphous volume of 
the crystal and thus to the concentration of the defects. 
The first approximation of the reflection curve becomes 
narrower and higher if the diameter of the defects 
grows. The contribution of the second approximation is 
essential only in the close vicinity of the maximum of 
the reflection curve of the quasiperfect crystal and it is 
approximately proportional to the defect diameter. 

(iii) The integrated intensity of diffraction from the 
quasiperfect crystal diminishes linearly with increasing 
the amorphous volume and it does not depend on the 
defect diameter. The first approximation of the partially 
coherent contribution to the integrated intensity is 
proportional to the amorphous volume and it is 
approximately not dependent on the defect diameter if 
this volume remains constant. The contribution of the 
second approximation to the integrated intensity is at 
most a few percent of the first approximation. 
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